Майк Брукс (Mike Brooks), старший директор бизнес-подразделения APM в Aspen Technology, компании, специализирующейся на разработке программного обеспечения для оптимизации производственных активов, поделился экспертным мнением на тему особенностей использования технологий анализа данных.
Майк Брукс (Mike Brooks)
В последние годы анализ данных играет ключевую роль во многих отраслях, в том числе промышленном производстве и инженерном проектировании. В сочетании с предметными знаниями аналитика может быть незаменима в определении причин перебоев и потери прибыли. Однако результаты сильно зависят от контекста данных, а выводы могут оказаться ложными.
Необходимость в указаниях
Технический директор одной молодой компании, которая занимается машинным обучением, как-то сказал: «дайте мне данные, и я решу любые проблемы». Хотел бы я повторить эти слова, но, к сожалению, это так не работает. Технологии анализа данных, в том числе машинного обучения, универсальны для всех отраслей, а предметные знания — нет. Поэтому для успешной работы нужны оба слагаемых.
Аналитическое решение должно отличать причинно-следственные связи от простой корреляции и сообщать только о реальных проблемах. Но анализ данных, в том числе машинное обучение, — не палочка-выручалочка. Чтобы с помощью аналитики находить верные ответы на вопросы, нужны указания. В противном случае возникают бессмысленные корреляции, например, знаменитое утверждение о том, что рост потребления маргарина приводит к разводам в штате Мэн. Указания — это предметные знания, которые ограничивают контекстуальные данные, определяют разумные ожидания и исключают ничего не значащие взаимосвязи.
Машинное обучение помогает обнаружить всевозможные корреляции данных, многие из которых совершенно бесполезны. Чтобы установить причинно-следственные связи, нужны знания и опыт. Какие навыки и опыт потребуются вам для создания решения, сколько времени это займет и будет ли решение масштабируемым? В некотором смысле это естественное ограничение машинного обучения.
Используя кластеризацию при работе без участия человека, система машинного обучения может обнаруживать и запоминать модели поведения. В процессе проектирования и производства с помощью кластеризации можно определить стандартные сигналы, поступающие с датчиков на установках и вокруг них. А затем, опираясь на отклонения от нормы, называемые аномалиями, можно обнаруживать сбои в работе оборудования.
Еще одна технология машинного обучения — машинное обучение с учителем — требует участия человека, который сообщает о событии и называет дату и время, когда оно произошло. При этом система машинного обучения не понимает, что произошло. Ей известны только дата и время. Чтобы определить значение события, нужны предметные знания и понимание контекста данных. Узнав о событии, система машинного обучения запоминает признаки определенного поведения, которое предшествовало событию. Например, при эксплуатации в отраслях тяжелой промышленности станок может выйти из строя из-за повреждения подшипника. Запомнив точную модель поведения при износе или сбое, ИИ анализирует новые данные, чтобы обнаружить в них повторение этой модели до того, как произойдет сбой. Упреждающие уведомления позволяют не ждать полного износа и проводить ремонт до поломки. В результате снижаются затраты на обслуживание и увеличивается время бесперебойной работы.
Специалисты предприятия понимают взаимосвязи моделей поведения станков и механику износа. Опираясь на эти знания, они направляют систему машинного обучения, помогая обнаружить верные модели поведения при сбое. Кроме того, с помощью эмпирических и неэмпирических моделей мы можем прогнозировать примерный диапазон результатов, а затем определять указания для машинного обучения, которые помогут найти точные модели поведения при износе. Контекст данных очень важен при маркировке событий, выборе переменных и управлении очисткой данных. Эффективные решения сочетают в себе знания о процессах, служащих источником данных, и опыт использования аналитических технологий. Таким образом указания должны быть жесткими и надежными.
Применение на практике
Как это работает на практике? Возьмем двухэтапный подход. Начнем с проектирования. Изучите генерирующий данные процесс, правильно промаркируйте важные события и вычислите наиболее значимые из них, например, известные физические ограничения. Используйте эту информацию в качестве указаний для очистки данных и соответствующих моделей поведения с учетом режимов работы оборудования. Завершив процесс проектирования, переключитесь в режим анализа данных.
На этом этапе вы предоставляете контекст данных: теперь алгоритмы не учитывают конкретные проблемные области. Сейчас данным, алгоритмам и моделям поведения не известны их источники: данные — это просто данные. Масштабы, единицы оборудования и источники данных разнообразны и не важны. В этом контексте нам не нужны строгие технические модели и сложные дифференциальные уравнения.
Проще говоря, указания по вводу данных играют важную роль. Чтобы прийти к верным выводам, нужны четко обозначенные наборы данных. Предметные знания определяют контекст данных. Поэтому нужно изучать тонкости каждого производственного процесса, а затем переходить от проектирования к аналитике с использованием указаний.
О компании AspenTech
Компания AspenTech — ведущий поставщик программного обеспечения для оптимизации производительности активов. Наши продукты разработаны для использования в сложных промышленных средах, где важную роль играет оптимизация проектирования, эксплуатации и обслуживания производственных активов. AspenTech уникально сочетает десятилетия опыта в области моделирования производственных процессов с технологиями машинного обучения. Наша цель — создание программной платформы для автоматизации работы с производственными данными и обеспечение устойчивого конкурентного преимущества, сохраняя высокую доходность на протяжении всего жизненного цикла актива. Как следствие, предприятия капиталоемких отраслей промышленности могут максимально увеличить время безотказной работы оборудования и расширить границы производительности, эксплуатируя свои активы безопаснее, экологичнее, дольше и быстрее. Чтобы узнать больше, посетите сайт AspenTech.com
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.AcceptRejectRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.